swc_allocator/vec/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//! Faster vec type.
use std::{
fmt, io,
ops::{Deref, DerefMut},
};
#[cfg(feature = "rkyv")]
mod rkyv;
#[cfg(feature = "serde")]
mod serde;
use crate::{boxed::Box, FastAlloc};
/// Faster version of [`std::vec::Vec`].
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct Vec<T>(std::vec::Vec<T, FastAlloc>);
impl<T> Vec<T> {
/// Constructs a new, empty `Vec<T>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// let mut vec: Vec<i32> = Vec::new();
/// ```
///
/// Note: This is slower than using [Self::new_in] with cached [FastAlloc].
#[inline(always)]
pub fn new() -> Self {
Self::new_in(Default::default())
}
/// Constructs a new, empty `Vec<T, A>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// See [std::vec::Vec::new_in] for more information.
#[inline(always)]
pub fn new_in(alloc: FastAlloc) -> Self {
Self(std::vec::Vec::new_in(alloc))
}
/// Constructs a new, empty `Vec<T>` with at least the specified capacity.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `Vec`,
/// always use the [`capacity`] method after construction.
///
/// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
/// and the capacity will always be `usize::MAX`.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: Vec::capacity
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
///
/// // A vector of a zero-sized type will always over-allocate, since no
/// // allocation is necessary
/// let vec_units = Vec::<()>::with_capacity(10);
/// assert_eq!(vec_units.capacity(), usize::MAX);
/// ```
///
/// Note: This is slower than using [Self::with_capacity_in] with cached
/// [FastAlloc].
#[inline(always)]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Default::default())
}
/// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
/// with the provided allocator.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `Vec`,
/// always use the [`capacity`] method after construction.
///
/// For `Vec<T, A>` where `T` is a zero-sized type, there will be no
/// allocation and the capacity will always be `usize::MAX`.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: Vec::capacity
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// See [std::vec::Vec::with_capacity_in] for more information.
#[inline(always)]
pub fn with_capacity_in(capacity: usize, alloc: FastAlloc) -> Self {
Self(std::vec::Vec::with_capacity_in(capacity, alloc))
}
/// Converts the vector into [`Box<[T]>`][owned slice].
///
/// Before doing the conversion, this method discards excess capacity like
/// [`shrink_to_fit`].
///
/// [owned slice]: Box
/// [`shrink_to_fit`]: Vec::shrink_to_fit
///
/// # Examples
///
/// ```
/// let v = vec![1, 2, 3];
///
/// let slice = v.into_boxed_slice();
/// ```
///
/// Any excess capacity is removed:
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
///
/// assert!(vec.capacity() >= 10);
/// let slice = vec.into_boxed_slice();
/// assert_eq!(slice.into_vec().capacity(), 3);
/// ```
#[inline(always)]
pub fn into_boxed_slice(self) -> Box<[T]> {
self.0.into_boxed_slice().into()
}
/// Consumes and leaks the `Vec`, returning a mutable reference to the
/// contents, `&'a mut [T]`. Note that the type `T` must outlive the
/// chosen lifetime `'a`. If the type has only static references, or
/// none at all, then this may be chosen to be `'static`.
///
/// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
/// so the leaked allocation may include unused capacity that is not part
/// of the returned slice.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak.
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// let x = vec![1, 2, 3];
/// let static_ref: &'static mut [usize] = x.leak();
/// static_ref[0] += 1;
/// assert_eq!(static_ref, &[2, 2, 3]);
/// ```
#[inline(always)]
pub fn leak(self) -> &'static mut [T] {
self.0.leak()
}
/// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must have been allocated using the global allocator, such as via
/// the [`alloc::alloc`] function.
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment
/// really needs to be equal to satisfy the [`dealloc`] requirement that
/// memory must be allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes)
/// needs to be the same size as the pointer was allocated with. (Because
/// similar to alignment, [`dealloc`] must be called with the same layout
/// `size`.)
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` values must be properly initialized values of type
/// `T`.
/// * `capacity` needs to be the capacity that the pointer was allocated
/// with.
/// * The allocated size in bytes must be no larger than `isize::MAX`. See
/// the safety documentation of [`std::pointer::offset`].
///
/// These requirements are always upheld by any `ptr` that has been
/// allocated via `Vec<T>`. Other allocation sources are allowed if the
/// invariants are upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `Vec` or `String`.
/// It's also not safe to build one from a `Vec<u16>` and its length,
/// because the allocator cares about the alignment, and these two types
/// have different alignments. The buffer was allocated with alignment 2
/// (for `u16`), but after turning it into a `Vec<u8>` it'll be
/// deallocated with alignment 1. To avoid these issues, it is often
/// preferable to do casting/transmuting using [`slice::from_raw_parts`]
/// instead.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`alloc::alloc`]: crate::alloc::alloc
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
///
/// # Examples
///
/// ```
/// use std::ptr;
/// use std::mem;
///
/// let v = vec![1, 2, 3];
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len {
/// ptr::write(p.add(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts(p, len, cap);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
#[inline(always)]
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
Self(std::vec::Vec::from_raw_parts_in(
ptr,
length,
capacity,
FastAlloc::default(),
))
}
}
impl<T> Deref for Vec<T> {
type Target = std::vec::Vec<T, FastAlloc>;
#[inline(always)]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T> DerefMut for Vec<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<T> Default for Vec<T> {
#[inline(always)]
fn default() -> Self {
Self(std::vec::Vec::new_in(FastAlloc::default()))
}
}
impl<T> IntoIterator for Vec<T> {
type IntoIter = std::vec::IntoIter<T, FastAlloc>;
type Item = T;
#[inline(always)]
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a, T> IntoIterator for &'a Vec<T> {
type IntoIter = std::slice::Iter<'a, T>;
type Item = &'a T;
#[inline(always)]
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut Vec<T> {
type IntoIter = std::slice::IterMut<'a, T>;
type Item = &'a mut T;
#[inline(always)]
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<T> FromIterator<T> for Vec<T> {
#[inline(always)]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut vec = Vec::default();
vec.extend(iter);
vec
}
}
impl<T> From<Box<[T]>> for Vec<T> {
#[inline(always)]
fn from(v: Box<[T]>) -> Self {
Self(std::vec::Vec::from(v.0))
}
}
impl<T> From<Vec<T>> for Box<[T]> {
#[inline(always)]
fn from(v: Vec<T>) -> Self {
Box(v.0.into())
}
}
impl<T> Extend<T> for Vec<T> {
#[inline(always)]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
self.0.extend(iter)
}
}
impl io::Write for Vec<u8> {
#[inline(always)]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
io::Write::write(&mut self.0, buf)
}
#[inline(always)]
fn flush(&mut self) -> io::Result<()> {
io::Write::flush(&mut self.0)
}
#[inline(always)]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
io::Write::write_all(&mut self.0, buf)
}
#[inline(always)]
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
io::Write::write_vectored(&mut self.0, bufs)
}
#[inline(always)]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
io::Write::write_fmt(&mut self.0, fmt)
}
#[inline(always)]
fn by_ref(&mut self) -> &mut Self
where
Self: Sized,
{
self
}
}
impl<T> AsRef<[T]> for Vec<T> {
#[inline(always)]
fn as_ref(&self) -> &[T] {
self.0.as_ref()
}
}