1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! Faster vec type.

use std::{
    fmt, io,
    ops::{Deref, DerefMut},
};

#[cfg(feature = "rkyv")]
mod rkyv;
#[cfg(feature = "serde")]
mod serde;

use crate::{boxed::Box, FastAlloc};

/// Faster version of [`std::vec::Vec`].
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]

pub struct Vec<T>(std::vec::Vec<T, FastAlloc>);

impl<T> Vec<T> {
    /// Constructs a new, empty `Vec<T>`.
    ///
    /// The vector will not allocate until elements are pushed onto it.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(unused_mut)]
    /// let mut vec: Vec<i32> = Vec::new();
    /// ```
    ///
    /// Note: This is slower than using [Self::new_in] with cached [FastAlloc].
    #[inline(always)]
    pub fn new() -> Self {
        Self::new_in(Default::default())
    }

    /// Constructs a new, empty `Vec<T, A>`.
    ///
    /// The vector will not allocate until elements are pushed onto it.
    ///
    /// See [std::vec::Vec::new_in] for more information.
    #[inline(always)]
    pub fn new_in(alloc: FastAlloc) -> Self {
        Self(std::vec::Vec::new_in(alloc))
    }

    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
    ///
    /// The vector will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements than
    /// `capacity`. If `capacity` is 0, the vector will not allocate.
    ///
    /// It is important to note that although the returned vector has the
    /// minimum *capacity* specified, the vector will have a zero *length*. For
    /// an explanation of the difference between length and capacity, see
    /// *[Capacity and reallocation]*.
    ///
    /// If it is important to know the exact allocated capacity of a `Vec`,
    /// always use the [`capacity`] method after construction.
    ///
    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
    /// and the capacity will always be `usize::MAX`.
    ///
    /// [Capacity and reallocation]: #capacity-and-reallocation
    /// [`capacity`]: Vec::capacity
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut vec = Vec::with_capacity(10);
    ///
    /// // The vector contains no items, even though it has capacity for more
    /// assert_eq!(vec.len(), 0);
    /// assert!(vec.capacity() >= 10);
    ///
    /// // These are all done without reallocating...
    /// for i in 0..10 {
    ///     vec.push(i);
    /// }
    /// assert_eq!(vec.len(), 10);
    /// assert!(vec.capacity() >= 10);
    ///
    /// // ...but this may make the vector reallocate
    /// vec.push(11);
    /// assert_eq!(vec.len(), 11);
    /// assert!(vec.capacity() >= 11);
    ///
    /// // A vector of a zero-sized type will always over-allocate, since no
    /// // allocation is necessary
    /// let vec_units = Vec::<()>::with_capacity(10);
    /// assert_eq!(vec_units.capacity(), usize::MAX);
    /// ```
    ///
    /// Note: This is slower than using [Self::with_capacity_in] with cached
    /// [FastAlloc].
    #[inline(always)]
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_in(capacity, Default::default())
    }

    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
    /// with the provided allocator.
    ///
    /// The vector will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements than
    /// `capacity`. If `capacity` is 0, the vector will not allocate.
    ///
    /// It is important to note that although the returned vector has the
    /// minimum *capacity* specified, the vector will have a zero *length*. For
    /// an explanation of the difference between length and capacity, see
    /// *[Capacity and reallocation]*.
    ///
    /// If it is important to know the exact allocated capacity of a `Vec`,
    /// always use the [`capacity`] method after construction.
    ///
    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no
    /// allocation and the capacity will always be `usize::MAX`.
    ///
    /// [Capacity and reallocation]: #capacity-and-reallocation
    /// [`capacity`]: Vec::capacity
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX` bytes.
    ///
    /// See [std::vec::Vec::with_capacity_in] for more information.
    #[inline(always)]
    pub fn with_capacity_in(capacity: usize, alloc: FastAlloc) -> Self {
        Self(std::vec::Vec::with_capacity_in(capacity, alloc))
    }

    /// Converts the vector into [`Box<[T]>`][owned slice].
    ///
    /// Before doing the conversion, this method discards excess capacity like
    /// [`shrink_to_fit`].
    ///
    /// [owned slice]: Box
    /// [`shrink_to_fit`]: Vec::shrink_to_fit
    ///
    /// # Examples
    ///
    /// ```
    /// let v = vec![1, 2, 3];
    ///
    /// let slice = v.into_boxed_slice();
    /// ```
    ///
    /// Any excess capacity is removed:
    ///
    /// ```
    /// let mut vec = Vec::with_capacity(10);
    /// vec.extend([1, 2, 3]);
    ///
    /// assert!(vec.capacity() >= 10);
    /// let slice = vec.into_boxed_slice();
    /// assert_eq!(slice.into_vec().capacity(), 3);
    /// ```
    #[inline(always)]
    pub fn into_boxed_slice(self) -> Box<[T]> {
        self.0.into_boxed_slice().into()
    }

    /// Consumes and leaks the `Vec`, returning a mutable reference to the
    /// contents, `&'a mut [T]`. Note that the type `T` must outlive the
    /// chosen lifetime `'a`. If the type has only static references, or
    /// none at all, then this may be chosen to be `'static`.
    ///
    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
    /// so the leaked allocation may include unused capacity that is not part
    /// of the returned slice.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// let x = vec![1, 2, 3];
    /// let static_ref: &'static mut [usize] = x.leak();
    /// static_ref[0] += 1;
    /// assert_eq!(static_ref, &[2, 2, 3]);
    /// ```
    #[inline(always)]
    pub fn leak(self) -> &'static mut [T] {
        self.0.leak()
    }

    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
    ///
    /// # Safety
    ///
    /// This is highly unsafe, due to the number of invariants that aren't
    /// checked:
    ///
    /// * `ptr` must have been allocated using the global allocator, such as via
    ///   the [`alloc::alloc`] function.
    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
    ///   (`T` having a less strict alignment is not sufficient, the alignment
    ///   really needs to be equal to satisfy the [`dealloc`] requirement that
    ///   memory must be allocated and deallocated with the same layout.)
    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes)
    ///   needs to be the same size as the pointer was allocated with. (Because
    ///   similar to alignment, [`dealloc`] must be called with the same layout
    ///   `size`.)
    /// * `length` needs to be less than or equal to `capacity`.
    /// * The first `length` values must be properly initialized values of type
    ///   `T`.
    /// * `capacity` needs to be the capacity that the pointer was allocated
    ///   with.
    /// * The allocated size in bytes must be no larger than `isize::MAX`. See
    ///   the safety documentation of [`std::pointer::offset`].
    ///
    /// These requirements are always upheld by any `ptr` that has been
    /// allocated via `Vec<T>`. Other allocation sources are allowed if the
    /// invariants are upheld.
    ///
    /// Violating these may cause problems like corrupting the allocator's
    /// internal data structures. For example it is normally **not** safe
    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
    /// `size_t`, doing so is only safe if the array was initially allocated by
    /// a `Vec` or `String`.
    /// It's also not safe to build one from a `Vec<u16>` and its length,
    /// because the allocator cares about the alignment, and these two types
    /// have different alignments. The buffer was allocated with alignment 2
    /// (for `u16`), but after turning it into a `Vec<u8>` it'll be
    /// deallocated with alignment 1. To avoid these issues, it is often
    /// preferable to do casting/transmuting using [`slice::from_raw_parts`]
    /// instead.
    ///
    /// The ownership of `ptr` is effectively transferred to the
    /// `Vec<T>` which may then deallocate, reallocate or change the
    /// contents of memory pointed to by the pointer at will. Ensure
    /// that nothing else uses the pointer after calling this
    /// function.
    ///
    /// [`String`]: crate::string::String
    /// [`alloc::alloc`]: crate::alloc::alloc
    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ptr;
    /// use std::mem;
    ///
    /// let v = vec![1, 2, 3];
    // FIXME Update this when vec_into_raw_parts is stabilized
    /// // Prevent running `v`'s destructor so we are in complete control
    /// // of the allocation.
    /// let mut v = mem::ManuallyDrop::new(v);
    ///
    /// // Pull out the various important pieces of information about `v`
    /// let p = v.as_mut_ptr();
    /// let len = v.len();
    /// let cap = v.capacity();
    ///
    /// unsafe {
    ///     // Overwrite memory with 4, 5, 6
    ///     for i in 0..len {
    ///         ptr::write(p.add(i), 4 + i);
    ///     }
    ///
    ///     // Put everything back together into a Vec
    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
    ///     assert_eq!(rebuilt, [4, 5, 6]);
    /// }
    /// ```
    #[inline(always)]
    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
        Self(std::vec::Vec::from_raw_parts_in(
            ptr,
            length,
            capacity,
            FastAlloc::default(),
        ))
    }
}

impl<T> Deref for Vec<T> {
    type Target = std::vec::Vec<T, FastAlloc>;

    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T> DerefMut for Vec<T> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<T> Default for Vec<T> {
    #[inline(always)]
    fn default() -> Self {
        Self(std::vec::Vec::new_in(FastAlloc::default()))
    }
}

impl<T> IntoIterator for Vec<T> {
    type IntoIter = std::vec::IntoIter<T, FastAlloc>;
    type Item = T;

    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}
impl<'a, T> IntoIterator for &'a Vec<T> {
    type IntoIter = std::slice::Iter<'a, T>;
    type Item = &'a T;

    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut Vec<T> {
    type IntoIter = std::slice::IterMut<'a, T>;
    type Item = &'a mut T;

    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

impl<T> FromIterator<T> for Vec<T> {
    #[inline(always)]
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut vec = Vec::default();
        vec.extend(iter);
        vec
    }
}

impl<T> From<Box<[T]>> for Vec<T> {
    #[inline(always)]
    fn from(v: Box<[T]>) -> Self {
        Self(std::vec::Vec::from(v.0))
    }
}

impl<T> From<Vec<T>> for Box<[T]> {
    #[inline(always)]
    fn from(v: Vec<T>) -> Self {
        Box(v.0.into())
    }
}

impl<T> Extend<T> for Vec<T> {
    #[inline(always)]
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.0.extend(iter)
    }
}

impl io::Write for Vec<u8> {
    #[inline(always)]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        io::Write::write(&mut self.0, buf)
    }

    #[inline(always)]
    fn flush(&mut self) -> io::Result<()> {
        io::Write::flush(&mut self.0)
    }

    #[inline(always)]
    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        io::Write::write_all(&mut self.0, buf)
    }

    #[inline(always)]
    fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
        io::Write::write_vectored(&mut self.0, bufs)
    }

    #[inline(always)]
    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
        io::Write::write_fmt(&mut self.0, fmt)
    }

    #[inline(always)]
    fn by_ref(&mut self) -> &mut Self
    where
        Self: Sized,
    {
        self
    }
}

impl<T> AsRef<[T]> for Vec<T> {
    #[inline(always)]
    fn as_ref(&self) -> &[T] {
        self.0.as_ref()
    }
}