swc_ecma_transforms_compat/class_fields_use_set.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
use std::mem;
use swc_common::{util::take::Take, Span, Spanned, DUMMY_SP};
use swc_ecma_ast::*;
use swc_ecma_utils::{
constructor::inject_after_super, default_constructor_with_span, is_literal,
is_simple_pure_expr, private_ident, prop_name_to_member_prop, ExprFactory, ModuleItemLike,
StmtLike,
};
use swc_ecma_visit::{noop_visit_mut_type, visit_mut_pass, VisitMut, VisitMutWith};
/// # What does this module do?
///
/// This module will transpile the class semantics
/// from `[[Define]]` to `[[Set]]`.
///
///
/// Note: class's native field is `[[Define]]` semantics.
///
/// # Why is it needed?
/// The getter/setter from the super class won't be triggered in `[[Define]]`
/// semantics.
///
/// Some decorators depend on super class getter/setter.
/// Therefore, scenarios like this will require `[[Set]]` semantics.
///
/// ## Example
///
/// ```JavaScript
/// class Foo {
/// a = 1;
/// #b = 2;
/// static c = 3;
/// static #d = 4;
/// }
/// ```
///
/// result:
///
/// ```JavaScript
/// class Foo {
/// #b;
/// static {
/// this.c = 3;
/// }
/// static #d = 4;
/// constructor() {
/// this.a = 1;
/// this.#b = 2;
/// }
/// }
/// ```
///
/// The variable `a` will be relocated to the constructor. Although the variable
/// `#b` is not influenced by `[[Define]]` or `[[Set]]` semantics, its execution
/// order is associated with variable `a`, thus its initialization is moved into
/// the constructor.
///
/// The static variable `c` is moved to the static block for `[[Set]]` semantic
/// conversion. Whereas, variable `#d` remains completely unaffected and
/// conserved in its original location.
///
/// Furthermore, for class props that have side effects, an extraction and
/// conversion will be performed.
///
/// For example,
///
/// ```JavaScript
/// class Foo {
/// [foo()] = 1;
/// }
/// ```
///
/// result:
///
/// ```JavaScript
/// let prop;
/// class Foo{
/// static {
/// prop = foo();
/// }
/// constructor() {
/// this[prop] = 1;
/// }
/// }
/// ```
pub fn class_fields_use_set(pure_getters: bool) -> impl Pass {
visit_mut_pass(ClassFieldsUseSet { pure_getters })
}
#[derive(Debug)]
struct ClassFieldsUseSet {
pure_getters: bool,
}
impl VisitMut for ClassFieldsUseSet {
noop_visit_mut_type!(fail);
fn visit_mut_module_items(&mut self, n: &mut Vec<ModuleItem>) {
self.visit_mut_stmts_like(n);
}
fn visit_mut_stmts(&mut self, n: &mut Vec<Stmt>) {
self.visit_mut_stmts_like(n);
}
fn visit_mut_class(&mut self, n: &mut Class) {
// visit inner classes first
n.visit_mut_children_with(self);
let mut fields_handler: FieldsHandler = FieldsHandler {
super_call_span: n.super_class.as_ref().map(|_| n.span),
};
n.body.visit_mut_with(&mut fields_handler);
}
}
impl ClassFieldsUseSet {
fn visit_mut_stmts_like<T>(&mut self, n: &mut Vec<T>)
where
T: StmtLike
+ ModuleItemLike
+ VisitMutWith<Self>
+ VisitMutWith<ComputedFieldsHandler>
+ From<Stmt>,
{
let mut stmts = Vec::with_capacity(n.len());
let mut computed_fields_handler = ComputedFieldsHandler {
var_decls: Default::default(),
static_init_blocks: Default::default(),
pure_getters: self.pure_getters,
};
for mut stmt in n.drain(..) {
stmt.visit_mut_with(&mut computed_fields_handler);
let var_decls = computed_fields_handler.var_decls.take();
if !var_decls.is_empty() {
stmts.push(T::from(
VarDecl {
span: DUMMY_SP,
kind: VarDeclKind::Let,
declare: false,
decls: var_decls,
..Default::default()
}
.into(),
))
}
stmt.visit_mut_with(self);
stmts.push(stmt);
}
*n = stmts;
}
}
#[derive(Debug)]
struct FieldsHandler {
super_call_span: Option<Span>,
}
impl VisitMut for FieldsHandler {
noop_visit_mut_type!(fail);
fn visit_mut_class(&mut self, _: &mut Class) {
// skip inner classes
// In fact, FieldsHandler does not visit children recursively.
// We call FieldsHandler with the class.body as the only entry point.
// The FieldsHandler actually operates in a iterative way.
}
fn visit_mut_class_members(&mut self, n: &mut Vec<ClassMember>) {
let mut constructor_inits = Vec::new();
for member in n.iter_mut() {
match member {
ClassMember::ClassProp(ClassProp {
ref span,
ref is_static,
key,
value,
..
}) => {
if let Some(value) = value.take() {
let init_expr: Expr = AssignExpr {
span: *span,
op: op!("="),
left: MemberExpr {
span: DUMMY_SP,
obj: ThisExpr::dummy().into(),
prop: prop_name_to_member_prop(key.take()),
}
.into(),
right: value,
}
.into();
if *is_static {
*member = StaticBlock {
span: DUMMY_SP,
body: BlockStmt {
span: DUMMY_SP,
stmts: vec![init_expr.into_stmt()],
..Default::default()
},
}
.into();
continue;
} else {
constructor_inits.push(init_expr.into());
}
}
member.take();
}
ClassMember::PrivateProp(PrivateProp {
ref span,
is_static: false,
key,
value,
..
}) => {
if let Some(value) = value.take() {
let init_expr: Expr = AssignExpr {
span: *span,
op: op!("="),
left: MemberExpr {
span: DUMMY_SP,
obj: ThisExpr::dummy().into(),
prop: MemberProp::PrivateName(key.clone()),
}
.into(),
right: value,
}
.into();
constructor_inits.push(init_expr.into());
}
}
_ => {}
}
}
if constructor_inits.is_empty() {
return;
}
if let Some(c) = n.iter_mut().find_map(|m| m.as_mut_constructor()) {
inject_after_super(c, constructor_inits.take());
} else {
let mut c = default_constructor_with_span(
self.super_call_span.is_some(),
self.super_call_span.span(),
);
inject_after_super(&mut c, constructor_inits.take());
n.push(c.into());
}
}
}
#[derive(Debug)]
struct ComputedFieldsHandler {
var_decls: Vec<VarDeclarator>,
static_init_blocks: Vec<Stmt>,
pure_getters: bool,
}
impl VisitMut for ComputedFieldsHandler {
noop_visit_mut_type!(fail);
fn visit_mut_class_prop(&mut self, n: &mut ClassProp) {
match &mut n.key {
PropName::Computed(ComputedPropName { expr, .. })
if !is_literal(expr) && !is_simple_pure_expr(expr, self.pure_getters) =>
{
let ref_key = private_ident!("prop");
let mut computed_expr = ref_key.clone().into();
mem::swap(expr, &mut computed_expr);
self.var_decls.push(VarDeclarator {
span: DUMMY_SP,
name: ref_key.clone().into(),
init: None,
definite: false,
});
self.static_init_blocks.push({
let assign_expr = computed_expr.make_assign_to(op!("="), ref_key.into());
assign_expr.into_stmt()
});
}
_ => (),
}
}
fn visit_mut_class_member(&mut self, n: &mut ClassMember) {
if n.is_class_prop() {
n.visit_mut_children_with(self);
}
}
fn visit_mut_class_members(&mut self, n: &mut Vec<ClassMember>) {
n.visit_mut_children_with(self);
if !self.static_init_blocks.is_empty() {
n.insert(
0,
StaticBlock {
span: DUMMY_SP,
body: BlockStmt {
span: DUMMY_SP,
stmts: self.static_init_blocks.take(),
..Default::default()
},
}
.into(),
);
}
}
}