swc_ecma_fast_parser/lexer/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
//! High-performance lexer for ECMAScript/TypeScript
//!
//! This lexer is designed for maximum performance and operates at the byte
//! level directly on the input string for optimal throughput.
#![allow(clippy::redundant_closure_call)]
mod common;
mod cursor;
mod identifier;
mod jsx;
mod number;
mod operators;
mod regex;
mod string;
mod template;
#[cfg(test)]
mod tests;
use std::rc::Rc;
use cursor::Cursor;
use memchr::memchr2;
use swc_common::{BytePos, Span, DUMMY_SP};
use wide::u8x16;
use crate::{
error::{Error, ErrorKind, Result},
token::{Token, TokenType, TokenValue},
util::{likely, unlikely},
JscTarget, SingleThreadedComments, Syntax,
};
/// Represents line break detection
/// Optimized to fit in a single byte and provide performant conversions
#[derive(Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
enum LineBreak {
None = 0,
Present = 1,
}
impl From<bool> for LineBreak {
#[inline(always)]
fn from(b: bool) -> Self {
// Use direct transmute for faster conversion - avoid branching
unsafe { std::mem::transmute(b as u8) }
}
}
impl From<LineBreak> for bool {
#[inline(always)]
fn from(lb: LineBreak) -> Self {
// Direct conversion to boolean with no branching
lb as u8 != 0
}
}
/// High-performance lexer for ECMAScript/TypeScript
///
/// This lexer processes input as UTF-8 bytes for maximum performance.
#[repr(C)] // Ensure predictable memory layout
pub struct Lexer<'a> {
/// Current token
pub current: Token,
/// Byte-level cursor to the input source
cursor: Cursor<'a>,
/// Syntax configuration for the parser
pub syntax: Syntax,
/// Target ECMAScript version
pub target: JscTarget,
/// Start position of the current token
start_pos: BytePos,
/// Comments storage
pub comments: Option<Rc<SingleThreadedComments>>,
/// Whether the lexer is in strict mode
pub strict_mode: bool,
/// Whether the lexer is in JSX element context
pub in_jsx_element: bool,
/// Whether the lexer is in template literal context
pub in_template: bool,
pub in_template_expr: bool,
/// Whether we had a line break before the current token
had_line_break: LineBreak,
}
// Bit flags for character classification - used in lookup tables
const CHAR_WHITESPACE: u8 = 0b0000_0001;
const CHAR_LINEBREAK: u8 = 0b0000_0010;
const CHAR_ID_START: u8 = 0b0000_0100;
const CHAR_ID_CONTINUE: u8 = 0b0000_1000;
const CHAR_DIGIT: u8 = 0b0001_0000;
const CHAR_HEX_DIGIT: u8 = 0b0010_0000;
const CHAR_OPERATOR: u8 = 0b0100_0000;
const CHAR_SPECIAL: u8 = 0b1000_0000;
// SIMD vectors for common whitespace characters
static SPACE_SIMD_VEC: u8x16 = u8x16::new([b' '; 16]);
static TAB_SIMD_VEC: u8x16 = u8x16::new([b'\t'; 16]);
static FORM_FEED_SMID_VEC: u8x16 = u8x16::new([0x0c; 16]);
static VECR_TAB_SMID_VEC: u8x16 = u8x16::new([0x0b; 16]);
// Extended lookup table for faster character checks (ASCII only)
static ASCII_LOOKUP: [u8; 256] = {
let mut table = [0u8; 256];
// Mark whitespace characters
table[b' ' as usize] = CHAR_WHITESPACE;
table[b'\t' as usize] = CHAR_WHITESPACE;
table[b'\n' as usize] = CHAR_WHITESPACE | CHAR_LINEBREAK;
table[b'\r' as usize] = CHAR_WHITESPACE | CHAR_LINEBREAK;
table[0x0c_usize] = CHAR_WHITESPACE; // Form feed
table[0x0b_usize] = CHAR_WHITESPACE; // Vertical tab
// Mark identifier start characters (a-z, A-Z, _, $)
let mut i = 0;
while i < 26 {
table[(b'a' + i) as usize] |=
CHAR_ID_START | CHAR_ID_CONTINUE | (CHAR_HEX_DIGIT * ((i < 6) as u8));
table[(b'A' + i) as usize] |=
CHAR_ID_START | CHAR_ID_CONTINUE | (CHAR_HEX_DIGIT * ((i < 6) as u8));
i += 1;
}
table[b'_' as usize] |= CHAR_ID_START | CHAR_ID_CONTINUE;
table[b'$' as usize] |= CHAR_ID_START | CHAR_ID_CONTINUE;
// Mark digits (0-9)
i = 0;
while i < 10 {
table[(b'0' + i) as usize] |= CHAR_ID_CONTINUE | CHAR_DIGIT | CHAR_HEX_DIGIT;
i += 1;
}
// Mark common operators
table[b'+' as usize] |= CHAR_OPERATOR;
table[b'-' as usize] |= CHAR_OPERATOR;
table[b'*' as usize] |= CHAR_OPERATOR;
table[b'/' as usize] |= CHAR_OPERATOR;
table[b'%' as usize] |= CHAR_OPERATOR;
table[b'=' as usize] |= CHAR_OPERATOR;
table[b'<' as usize] |= CHAR_OPERATOR;
table[b'>' as usize] |= CHAR_OPERATOR;
table[b'&' as usize] |= CHAR_OPERATOR;
table[b'|' as usize] |= CHAR_OPERATOR;
table[b'^' as usize] |= CHAR_OPERATOR;
table[b'!' as usize] |= CHAR_OPERATOR;
table[b'~' as usize] |= CHAR_OPERATOR | CHAR_SPECIAL; // Both special char and operator
table[b'?' as usize] |= CHAR_OPERATOR;
table[b'.' as usize] |= CHAR_OPERATOR;
table[b':' as usize] |= CHAR_SPECIAL; // Colon is only a special char, not an operator
// Mark special characters (frequently used in parsing decisions)
table[b'{' as usize] |= CHAR_SPECIAL;
table[b'}' as usize] |= CHAR_SPECIAL;
table[b'(' as usize] |= CHAR_SPECIAL;
table[b')' as usize] |= CHAR_SPECIAL;
table[b'[' as usize] |= CHAR_SPECIAL;
table[b']' as usize] |= CHAR_SPECIAL;
table[b';' as usize] |= CHAR_SPECIAL;
table[b',' as usize] |= CHAR_SPECIAL;
table[b'"' as usize] |= CHAR_SPECIAL;
table[b'\'' as usize] |= CHAR_SPECIAL;
table[b'`' as usize] |= CHAR_SPECIAL;
table[b'#' as usize] |= CHAR_SPECIAL;
table[b'@' as usize] |= CHAR_SPECIAL;
table
};
// Token type dispatch table to avoid large match statements - this stores
// TokenType by character
static TOKEN_DISPATCH: [TokenType; 128] = {
let mut table = [TokenType::Invalid; 128];
// Single-character tokens
table[b'(' as usize] = TokenType::LParen;
table[b')' as usize] = TokenType::RParen;
table[b'{' as usize] = TokenType::LBrace;
table[b'}' as usize] = TokenType::RBrace;
table[b'[' as usize] = TokenType::LBracket;
table[b']' as usize] = TokenType::RBracket;
table[b';' as usize] = TokenType::Semi;
table[b',' as usize] = TokenType::Comma;
table[b':' as usize] = TokenType::Colon;
table[b'~' as usize] = TokenType::Tilde;
table[b'@' as usize] = TokenType::At;
table
};
impl<'a> Lexer<'a> {
/// Create a new lexer from a string input
#[inline(always)]
pub fn new(
input: &'a str,
target: JscTarget,
syntax: Syntax,
comments: Option<Rc<SingleThreadedComments>>,
) -> Self {
let cursor = Cursor::new(input);
let dummy_token = Token::new(TokenType::EOF, DUMMY_SP, false, TokenValue::None);
let mut lexer = Self {
cursor,
current: dummy_token,
syntax,
target,
strict_mode: false,
in_jsx_element: false,
in_template: false,
in_template_expr: false,
comments,
start_pos: BytePos(0),
had_line_break: LineBreak::None,
};
// Prime the lexer with the first token
let _ = lexer.next_token();
lexer
}
/// Get the next token
#[inline(always)]
pub fn next_token(&mut self) -> Result<Token> {
if likely(!self.in_template || self.in_template_expr) {
// Skip whitespaces and comments
self.skip_whitespace();
}
// Remember if there were line breaks before this token
let had_line_break = self.had_line_break;
self.had_line_break = LineBreak::None;
// Remember the start position of this token
self.start_pos = self.cursor.pos();
// If we're in JSX mode, use the JSX tokenizer
if unlikely(self.in_jsx_element) {
return self.read_jsx_token(had_line_break.into());
}
// Get the next character - fast path for EOF
let ch = match self.cursor.peek() {
Some(ch) => ch,
None => {
// End of file - reuse the same EOF token object
let token = Token::new(
TokenType::EOF,
self.span(),
had_line_break.into(),
TokenValue::None,
);
return Ok(std::mem::replace(&mut self.current, token));
}
};
// Process the character to determine the token type
let token = self.read_token(ch, had_line_break.into())?;
// Update the current token and return a clone of the previous one
Ok(std::mem::replace(&mut self.current, token))
}
/// Read the next token starting with the given character
#[inline(always)]
fn read_token(&mut self, ch: u8, had_line_break: bool) -> Result<Token> {
if unlikely(self.in_template && !self.in_template_expr) {
return self.read_template_content(had_line_break);
}
// Fast path for ASCII tokens using lookup table
if likely(ch < 128) {
let char_type = unsafe { *ASCII_LOOKUP.get_unchecked(ch as usize) };
// Fast path for single-character tokens (very common)
if char_type & CHAR_SPECIAL != 0 {
match ch {
// Group frequent tokens together for better branch prediction
// Use direct table lookup for single-character tokens
b'{' | b'}' | b'(' | b')' | b'[' | b']' | b';' | b',' | b':' | b'~' | b'@' => {
// Special case for closing brace in template
if unlikely(ch == b'}' && self.in_template) {
// End of template expression
self.in_template_expr = false;
}
let token_type = unsafe { *TOKEN_DISPATCH.get_unchecked(ch as usize) };
self.cursor.advance();
Ok(Token::new(
token_type,
self.span(),
had_line_break,
TokenValue::None,
))
}
// String literals - group together for better branch prediction
b'"' | b'\'' => self.read_string(ch),
b'`' => {
self.in_template = true;
self.cursor.advance();
Ok(Token::new(
TokenType::BackQuote,
self.span(),
had_line_break,
TokenValue::None,
))
}
// Other special characters that need custom handling
b'#' => self.read_hash(),
// This should not happen given our table design, but handle it anyway
_ => {
self.cursor.advance();
let span = self.span();
Err(Error {
kind: ErrorKind::General {
message: format!("Unexpected character: '{}'", ch as char),
},
span,
})
}
}
}
// Check for digits (numeric literals)
else if char_type & CHAR_DIGIT != 0 {
self.read_number()
}
// Check for operator characters
else if char_type & CHAR_OPERATOR != 0 {
// Dispatch to specific operator handlers based on the character
match ch {
b'.' => self.read_dot(),
b'=' => self.read_equals(),
b'+' => self.read_plus(),
b'-' => self.read_minus(),
b'/' => self.read_slash(had_line_break),
b'<' => self.read_less_than(),
b'>' => self.read_greater_than(),
b'!' => self.read_exclamation_mark(),
b'?' => self.read_question_mark(),
b'*' => self.read_asterisk(),
b'%' => self.read_percent(),
b'|' => self.read_pipe(),
b'&' => self.read_ampersand(),
b'^' => self.read_caret(),
_ => {
// This should never happen with our table design
self.cursor.advance();
let span = self.span();
Err(Error {
kind: ErrorKind::General {
message: format!("Unexpected character: '{}'", ch as char),
},
span,
})
}
}
}
// Identifier start characters
else if char_type & CHAR_ID_START != 0 {
// Fast path for identifiers that can't be keywords
if Self::is_non_keyword_start(ch) {
self.read_non_keyword_identifier()
} else {
self.read_identifier()
}
}
// Any other ASCII character (error case)
else {
self.cursor.advance();
let span = self.span();
Err(Error {
kind: ErrorKind::General {
message: format!("Unexpected character: '{}'", ch as char),
},
span,
})
}
} else {
// Non-ASCII character path (less common)
if Self::is_identifier_start(ch) {
self.read_non_keyword_identifier()
} else {
self.cursor.advance();
let span = self.span();
Err(Error {
kind: ErrorKind::General {
message: format!("Unexpected character: '{}'", ch as char),
},
span,
})
}
}
}
/// Create a span from the start position to the current position
#[inline(always)]
fn span(&self) -> Span {
Span::new(self.start_pos, self.cursor.pos())
}
/// Skip whitespace and comments - optimized hot path
#[inline(always)]
fn skip_whitespace(&mut self) {
// Process whitespace in SIMD batches when possible
while !self.cursor.is_eof() {
// First, handle SIMD optimized whitespace skipping for common ASCII whitespace
if self.process_whitespace_simd() {
continue;
}
// Fallback to standard processing for comments and special cases
let ch = match self.cursor.peek() {
Some(c) => c,
None => break,
};
// Handle ASCII characters
if likely(ch < 128) {
let char_type = unsafe { *ASCII_LOOKUP.get_unchecked(ch as usize) };
// Fast path for common whitespace
if char_type & CHAR_WHITESPACE != 0 {
// Special handling for line breaks
if unlikely(char_type & CHAR_LINEBREAK != 0) {
if ch == b'\n' {
self.cursor.advance();
self.had_line_break = LineBreak::Present;
continue;
} else if ch == b'\r' {
self.cursor.advance();
// Skip the following \n if it exists (CRLF sequence)
if let Some(b'\n') = self.cursor.peek() {
self.cursor.advance();
}
self.had_line_break = LineBreak::Present;
continue;
}
} else {
// Regular whitespace (space, tab, etc.)
self.cursor.advance();
continue;
}
}
// Handle comments - uses frequency-based ordering
if ch == b'/' {
match self.cursor.peek_at(1) {
// Line comment - very common in JS
Some(b'/') => {
self.cursor.advance_n(2);
self.skip_line_comment();
continue;
}
// Block comment - less common
Some(b'*') => {
self.cursor.advance_n(2);
self.skip_block_comment();
continue;
}
_ => break,
}
}
// Not whitespace or comment
break;
} else {
// Handle Unicode whitespace - rare case
if ch == 0xe2 {
// Check for line separator (U+2028) and paragraph separator (U+2029)
let bytes = self.cursor.peek_n(3);
if bytes.len() == 3
&& bytes[0] == 0xe2
&& bytes[1] == 0x80
&& (bytes[2] == 0xa8 || bytes[2] == 0xa9)
{
self.cursor.advance_n(3);
self.had_line_break = LineBreak::Present;
continue;
}
} else if ch == 0xef {
// BOM - extremely rare in middle of file
let bytes = self.cursor.peek_n(3);
if bytes.len() == 3 && bytes[0] == 0xef && bytes[1] == 0xbb && bytes[2] == 0xbf
{
self.cursor.advance_n(3);
continue;
}
}
// Not Unicode whitespace
break;
}
}
}
/// Process whitespace using SIMD acceleration
/// Returns true if it processed something, false if it found a
/// non-whitespace character
#[inline]
fn process_whitespace_simd(&mut self) -> bool {
// Need at least 16 bytes to use SIMD
let rest_len = self.cursor.rest().len();
if rest_len < 16 || self.cursor.position() + 16 > rest_len as u32 {
return false;
}
// Get current 16 bytes and load them directly into SIMD vector
let input = self.cursor.rest();
let data = unsafe {
// SAFETY: We've checked that we have at least 16 bytes
let mut bytes = [0u8; 16];
std::ptr::copy_nonoverlapping(input.as_ptr(), bytes.as_mut_ptr(), 16);
u8x16::new(bytes)
};
// Handle special characters separately for better branch prediction
let first_byte = unsafe { *input.get_unchecked(0) };
// Check for special cases that need individual handling
match first_byte {
b'\n' => {
self.cursor.advance();
self.had_line_break = LineBreak::Present;
return true;
}
b'\r' => {
self.cursor.advance();
if let Some(b'\n') = self.cursor.peek() {
self.cursor.advance();
}
self.had_line_break = LineBreak::Present;
return true;
}
b'/' => {
// Check if this could be a comment start
if let Some(b'/') | Some(b'*') = self.cursor.peek_at(1) {
return false; // Let the caller handle comments
}
return false; // Not a whitespace
}
0xe2 => {
// Check for line separator (U+2028) and paragraph separator (U+2029)
let bytes = self.cursor.peek_n(3);
if bytes.len() == 3
&& bytes[0] == 0xe2
&& bytes[1] == 0x80
&& (bytes[2] == 0xa8 || bytes[2] == 0xa9)
{
self.cursor.advance_n(3);
self.had_line_break = LineBreak::Present;
return true;
}
return false;
}
_ => {}
}
// Fast path for regular whitespace (space, tab, form feed, vertical tab)
// Compare with our whitespace vectors
let is_space = data.cmp_eq(SPACE_SIMD_VEC);
let is_tab = data.cmp_eq(TAB_SIMD_VEC);
let is_ff = data.cmp_eq(FORM_FEED_SMID_VEC);
let is_vt = data.cmp_eq(VECR_TAB_SMID_VEC);
// Combine masks for regular whitespace
let is_basic_ws = is_space | is_tab | is_ff | is_vt;
// Convert SIMD mask to array to process consecutive whitespace
let ws_array = is_basic_ws.to_array();
// If the first byte is whitespace, process consecutive whitespace
if ws_array[0] != 0 {
// Count consecutive whitespace characters
let mut count = 0;
for ws_char in ws_array {
if ws_char == 0 {
break;
}
count += 1;
}
// Skip all consecutive basic whitespace characters at once
if count > 0 {
self.cursor.advance_n(count);
return true;
}
}
// No whitespace found
false
}
#[inline(always)]
fn skip_line_comment(&mut self) {
// Fast path using memchr2 to find either \n or \r
if let Some(pos) = memchr2(b'\n', b'\r', self.cursor.rest()) {
let ch = self.cursor.rest()[pos];
self.cursor.advance_n(pos as u32);
if ch == b'\n' {
// Simple newline
self.cursor.advance(); // Skip the newline
self.had_line_break = LineBreak::Present;
} else {
// Carriage return - check if followed by newline (CRLF)
self.cursor.advance(); // Skip the \r
if let Some(b'\n') = self.cursor.peek() {
self.cursor.advance(); // Skip the \n in CRLF
}
self.had_line_break = LineBreak::Present;
}
return;
}
// Slower fallback path for Unicode line breaks or when no line break is found
while let Some(ch) = self.cursor.peek() {
self.cursor.advance();
if ch == 0xe2 {
// Check for line separator (U+2028) and paragraph separator (U+2029)
let bytes = self.cursor.peek_n(2);
if bytes.len() == 2 && bytes[0] == 0x80 && (bytes[1] == 0xa8 || bytes[1] == 0xa9) {
self.cursor.advance_n(2); // Already advanced the first byte
self.had_line_break = LineBreak::Present;
break;
}
}
}
}
/// Skip a block comment - optimized for faster scanning with chunk-based
/// approach
#[inline(always)]
fn skip_block_comment(&mut self) {
let mut had_line_break = false;
// Use a specialized loop with chunk-based scanning for non-special chars
'outer: while let Some(ch) = self.cursor.peek() {
match ch {
// Check for end of comment
b'*' => {
self.cursor.advance();
if let Some(b'/') = self.cursor.peek() {
self.cursor.advance();
if had_line_break {
self.had_line_break = LineBreak::Present;
}
return;
}
}
// Handle line breaks
b'\n' => {
self.cursor.advance();
had_line_break = true;
}
b'\r' => {
self.cursor.advance();
// Skip the following \n if it exists (CRLF sequence)
if let Some(b'\n') = self.cursor.peek() {
self.cursor.advance();
}
had_line_break = true;
}
// Handle Unicode line breaks
0xe2 => {
// Check for line separator (U+2028) and paragraph separator (U+2029)
let bytes = self.cursor.peek_n(3);
if bytes.len() == 3
&& bytes[0] == 0xe2
&& bytes[1] == 0x80
&& (bytes[2] == 0xa8 || bytes[2] == 0xa9)
{
self.cursor.advance_n(3);
had_line_break = true;
continue;
}
self.cursor.advance();
}
// Fast path: skip chunks of regular characters
_ => {
// Process in larger chunks for better efficiency
let mut count = 1;
// Use a much larger chunk size (512) for better throughput
while count < 512 {
match self.cursor.peek_at(count) {
// Stop at special characters that need special handling
Some(b'*') | Some(b'\n') | Some(b'\r') | Some(0xe2) => break,
Some(_) => count += 1,
None => {
// End of input
self.cursor.advance_n(count);
break 'outer;
}
}
}
self.cursor.advance_n(count);
}
}
}
// If we reach here, the comment was not closed
if had_line_break {
self.had_line_break = LineBreak::Present;
}
}
/// Check if a byte is a valid identifier start character
#[inline(always)]
fn is_identifier_start(byte: u8) -> bool {
// ASCII fast path using optimized identifier functions
if likely(byte < 128) {
Self::is_ascii_id_start(byte)
} else {
// Non-ASCII, needs further checking in read_identifier
true
}
}
/// Check if a byte is a valid identifier continue character
#[inline(always)]
fn is_identifier_continue(byte: u8) -> bool {
// ASCII fast path using optimized identifier functions
if likely(byte < 128) {
Self::is_ascii_id_continue(byte)
} else {
// Non-ASCII, needs further checking in read_identifier
true
}
}
}