swc_ecma_fast_parser/parser/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
//! Expression parser implementation
//!
//! This module contains methods for parsing JavaScript expressions.

use swc_common::{Span, Spanned};
use swc_ecma_ast::{
    ArrayLit, AwaitExpr, BinExpr, BinaryOp, Bool, Expr, ExprOrSpread, Lit, Null, ObjectLit,
    ParenExpr, PropOrSpread, SpreadElement, ThisExpr, UnaryExpr, UnaryOp, UpdateExpr, UpdateOp,
    YieldExpr,
};

use crate::{
    error::{Error, ErrorKind, Result},
    parser::{util, Parser},
    token::{TokenType, TokenValue},
};

impl Parser<'_> {
    /// Parse an expression
    pub fn parse_expr(&mut self) -> Result<Box<Expr>> {
        self.parse_expr_with_precedence(0)
    }

    /// Parse an expression with the given precedence
    fn parse_expr_with_precedence(&mut self, precedence: u8) -> Result<Box<Expr>> {
        // Parse the left-hand side of the expression
        let mut left = self.parse_primary_expr()?;

        // Continue parsing binary operators as long as they have higher precedence
        while let Some(op_precedence) = self.get_binary_op_precedence() {
            if op_precedence < precedence {
                break;
            }

            // Parse the operator and right-hand side
            left = self.parse_binary_expr(left, op_precedence)?;
        }

        Ok(left)
    }

    /// Get the precedence of the current token if it's a binary operator
    fn get_binary_op_precedence(&self) -> Option<u8> {
        let token_type = self.current_token_type();

        // Check if the current token is a binary operator
        if !util::is_binary_operator(token_type) {
            return None;
        }

        // Return the precedence of the operator
        Some(match token_type {
            // Precedence 1: Comma
            // (Handled separately in parse_sequence_expr)

            // Precedence 2: Assignment operators
            TokenType::Eq
            | TokenType::PlusEq
            | TokenType::MinusEq
            | TokenType::MulEq
            | TokenType::DivEq
            | TokenType::ModEq
            | TokenType::ExpEq
            | TokenType::BitOrEq
            | TokenType::BitXorEq
            | TokenType::BitAndEq
            | TokenType::LogicalOrEq
            | TokenType::LogicalAndEq
            | TokenType::NullishEq => 2,

            // Precedence 3: Conditional (ternary) operator
            // (Handled separately in parse_conditional_expr)

            // Precedence 4: Logical OR
            TokenType::LogicalOr => 4,

            // Precedence 5: Logical AND
            TokenType::LogicalAnd => 5,

            // Precedence 6: Nullish coalescing
            TokenType::NullishCoalescing => 6,

            // Precedence 7: Bitwise OR
            TokenType::Pipe => 7,

            // Precedence 8: Bitwise XOR
            TokenType::Caret => 8,

            // Precedence 9: Bitwise AND
            TokenType::Ampersand => 9,

            // Precedence 10: Equality
            TokenType::EqEq | TokenType::NotEq | TokenType::EqEqEq | TokenType::NotEqEq => 10,

            // Precedence 11: Relational
            TokenType::Lt
            | TokenType::Gt
            | TokenType::LtEq
            | TokenType::GtEq
            | TokenType::In
            | TokenType::InstanceOf => 11,

            // Precedence 12: Shift
            TokenType::LShift | TokenType::RShift | TokenType::ZeroFillRShift => 12,

            // Precedence 13: Additive
            TokenType::Plus | TokenType::Minus => 13,

            // Precedence 14: Multiplicative
            TokenType::Asterisk | TokenType::Slash | TokenType::Percent => 14,

            // Precedence 15: Exponentiation
            TokenType::Exp => 15,

            // This should never happen if is_binary_operator is correct
            _ => 0,
        })
    }

    /// Parse a binary expression
    fn parse_binary_expr(&mut self, left: Box<Expr>, precedence: u8) -> Result<Box<Expr>> {
        let token_type = self.current_token_type();
        let op_span = self.current_span();

        // Convert token type to binary operator
        let op = match token_type {
            TokenType::EqEq => BinaryOp::EqEq,
            TokenType::NotEq => BinaryOp::NotEq,
            TokenType::EqEqEq => BinaryOp::EqEqEq,
            TokenType::NotEqEq => BinaryOp::NotEqEq,
            TokenType::Lt => BinaryOp::Lt,
            TokenType::LtEq => BinaryOp::LtEq,
            TokenType::Gt => BinaryOp::Gt,
            TokenType::GtEq => BinaryOp::GtEq,
            TokenType::LShift => BinaryOp::LShift,
            TokenType::RShift => BinaryOp::RShift,
            TokenType::ZeroFillRShift => BinaryOp::ZeroFillRShift,
            TokenType::Plus => BinaryOp::Add,
            TokenType::Minus => BinaryOp::Sub,
            TokenType::Asterisk => BinaryOp::Mul,
            TokenType::Slash => BinaryOp::Div,
            TokenType::Percent => BinaryOp::Mod,
            TokenType::Pipe => BinaryOp::BitOr,
            TokenType::Ampersand => BinaryOp::BitAnd,
            TokenType::Caret => BinaryOp::BitXor,
            TokenType::Exp => BinaryOp::Exp,
            TokenType::LogicalOr => BinaryOp::LogicalOr,
            TokenType::LogicalAnd => BinaryOp::LogicalAnd,
            TokenType::NullishCoalescing => BinaryOp::NullishCoalescing,
            TokenType::In => BinaryOp::In,
            TokenType::InstanceOf => BinaryOp::InstanceOf,
            _ => {
                // This should never happen if is_binary_operator is correct
                return Err(Error {
                    kind: ErrorKind::General {
                        message: format!("Unexpected token: {}", token_type),
                    },
                    span: op_span,
                });
            }
        };

        // Consume the operator token
        self.lexer.next_token()?;

        // Parse the right-hand side with higher precedence to ensure
        // right-associativity for exponentiation and correct associativity for
        // other operators
        let right_precedence = if token_type == TokenType::Exp {
            precedence // Right-associative
        } else {
            precedence + 1 // Left-associative
        };

        let right = self.parse_expr_with_precedence(right_precedence)?;

        // Create the binary expression
        let left_span = left.span();
        let right_span = right.span();
        let span = Span::new(left_span.lo, right_span.hi);
        Ok(Box::new(Expr::Bin(BinExpr {
            span,
            op,
            left,
            right,
        })))
    }

    /// Parse a primary expression
    fn parse_primary_expr(&mut self) -> Result<Box<Expr>> {
        let token_type = self.current_token_type();

        // Check if the token can start an expression
        if token_type.starts_expr() {
            match token_type {
                TokenType::This => self.parse_this_expr(),
                TokenType::Ident => self.parse_identifier_expr(),
                TokenType::Str => self.parse_string_literal(),
                TokenType::Num => self.parse_number_literal(),
                TokenType::BigInt => self.parse_bigint_literal(),
                TokenType::True | TokenType::False => self.parse_boolean_literal(),
                TokenType::Null => self.parse_null_literal(),
                TokenType::LParen => self.parse_paren_expr(),
                TokenType::LBracket => self.parse_array_expr(),
                TokenType::LBrace => self.parse_object_expr(),
                TokenType::Function => self.parse_function_expr(),
                TokenType::Class => self.parse_class_expr(),
                TokenType::New => self.parse_new_expr(),
                TokenType::Super => self.parse_super_expr(),
                TokenType::BackQuote => self.parse_template_literal(),
                TokenType::Bang
                | TokenType::Tilde
                | TokenType::Plus
                | TokenType::Minus
                | TokenType::TypeOf
                | TokenType::Void
                | TokenType::Delete => self.parse_unary_expr(),
                TokenType::PlusPlus | TokenType::MinusMinus => self.parse_update_expr(),
                TokenType::Await => {
                    if !self.in_async {
                        return Err(util::invalid_await_error(self.current_span()));
                    }
                    self.parse_await_expr()
                }
                TokenType::Yield => {
                    if !self.in_generator {
                        return Err(util::invalid_yield_error(self.current_span()));
                    }
                    self.parse_yield_expr()
                }
                _ => {
                    // This should never happen if starts_expr is correct
                    let span = self.current_span();
                    Err(Error {
                        kind: ErrorKind::General {
                            message: format!("Unexpected token: {}", token_type),
                        },
                        span,
                    })
                }
            }
        } else {
            // Unexpected token
            let span = self.current_span();
            Err(Error {
                kind: ErrorKind::UnexpectedToken {
                    expected: Some("expression"),
                    got: token_type.as_str().to_string(),
                },
                span,
            })
        }
    }

    /// Parse a this expression
    fn parse_this_expr(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        self.lexer.next_token()?; // Consume 'this'

        Ok(Box::new(Expr::This(ThisExpr { span })))
    }

    /// Parse an identifier expression
    fn parse_identifier_expr(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        let ident = util::token_value_to_ident(self.current(), span);
        self.lexer.next_token()?; // Consume identifier

        Ok(Box::new(Expr::Ident(ident)))
    }

    /// Parse a string literal
    fn parse_string_literal(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        let str_lit = util::token_value_to_str(self.current(), span);
        self.lexer.next_token()?; // Consume string

        Ok(Box::new(Expr::Lit(Lit::Str(str_lit))))
    }

    /// Parse a number literal
    fn parse_number_literal(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        let num_lit = util::token_value_to_number(self.current(), span);
        self.lexer.next_token()?; // Consume number

        Ok(Box::new(Expr::Lit(Lit::Num(num_lit))))
    }

    /// Parse a BigInt literal
    fn parse_bigint_literal(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();

        if let TokenValue::BigInt { value, raw } = &self.current().value {
            let bigint = swc_ecma_ast::BigInt {
                span,
                value: value.clone(),
                raw: Some(raw.clone()),
            };
            self.lexer.next_token()?; // Consume BigInt

            Ok(Box::new(Expr::Lit(Lit::BigInt(bigint))))
        } else {
            // This should never happen if the lexer is correct
            Err(Error {
                kind: ErrorKind::InvalidBigInt,
                span,
            })
        }
    }

    /// Parse a boolean literal
    fn parse_boolean_literal(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        let value = self.is(TokenType::True);
        self.lexer.next_token()?; // Consume boolean

        Ok(Box::new(Expr::Lit(Lit::Bool(Bool { span, value }))))
    }

    /// Parse a null literal
    fn parse_null_literal(&mut self) -> Result<Box<Expr>> {
        let span = self.current_span();
        self.lexer.next_token()?; // Consume 'null'

        Ok(Box::new(Expr::Lit(Lit::Null(Null { span }))))
    }

    /// Parse a parenthesized expression
    fn parse_paren_expr(&mut self) -> Result<Box<Expr>> {
        let start_span = self.current_span();
        self.lexer.next_token()?; // Consume '('

        let expr = self.parse_expr()?;

        // Check for closing parenthesis
        let end_span = self.current_span();
        self.expect(TokenType::RParen)?;

        let span = Span::new(start_span.lo, end_span.hi);
        Ok(Box::new(Expr::Paren(ParenExpr { span, expr })))
    }

    /// Parse an array expression
    fn parse_array_expr(&mut self) -> Result<Box<Expr>> {
        let start_span = self.current_span();
        self.lexer.next_token()?; // Consume '['

        let mut elements = Vec::new();

        // Parse array elements until we reach ']'
        while !self.is(TokenType::RBracket) {
            if self.is(TokenType::Comma) {
                // Empty element (hole)
                elements.push(None);
                self.lexer.next_token()?; // Consume ','
            } else {
                // Parse element
                let element = if self.is(TokenType::DotDotDot) {
                    // Spread element
                    let dot3_span = self.current_span();
                    self.lexer.next_token()?; // Consume '...'
                    let expr = self.parse_expr()?;
                    Some(ExprOrSpread {
                        spread: Some(dot3_span),
                        expr,
                    })
                } else {
                    // Regular element
                    let expr = self.parse_expr()?;
                    Some(ExprOrSpread { spread: None, expr })
                };

                elements.push(element);

                // Check for comma or end of array
                if !self.is(TokenType::RBracket) {
                    self.expect(TokenType::Comma)?;
                }
            }
        }

        let end_span = self.current_span();
        self.lexer.next_token()?; // Consume ']'

        let span = Span::new(start_span.lo, end_span.hi);
        Ok(Box::new(Expr::Array(ArrayLit {
            span,
            elems: elements,
        })))
    }

    /// Parse an object expression
    fn parse_object_expr(&mut self) -> Result<Box<Expr>> {
        let start_span = self.current_span();
        self.lexer.next_token()?; // Consume '{'

        let mut properties = Vec::new();

        // Parse object properties until we reach '}'
        while !self.is(TokenType::RBrace) {
            // Parse property
            let property = if self.is(TokenType::DotDotDot) {
                // Spread property
                let dot3_span = self.current_span();
                self.lexer.next_token()?; // Consume '...'
                let expr = self.parse_expr()?;
                PropOrSpread::Spread(SpreadElement {
                    dot3_token: dot3_span,
                    expr,
                })
            } else {
                // Regular property
                let prop = self.parse_object_property()?;
                PropOrSpread::Prop(prop)
            };

            properties.push(property);

            // Check for comma or end of object
            if !self.is(TokenType::RBrace) {
                self.expect(TokenType::Comma)?;
            }
        }

        let end_span = self.current_span();
        self.lexer.next_token()?; // Consume '}'

        let span = Span::new(start_span.lo, end_span.hi);
        Ok(Box::new(Expr::Object(ObjectLit {
            span,
            props: properties,
        })))
    }

    /// Parse an object property
    fn parse_object_property(&mut self) -> Result<Box<swc_ecma_ast::Prop>> {
        // TODO: Implement object property parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "Object property parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a function expression
    fn parse_function_expr(&mut self) -> Result<Box<Expr>> {
        // TODO: Implement function expression parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "Function expression parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a class expression
    fn parse_class_expr(&mut self) -> Result<Box<Expr>> {
        // TODO: Implement class expression parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "Class expression parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a new expression
    fn parse_new_expr(&mut self) -> Result<Box<Expr>> {
        // TODO: Implement new expression parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "New expression parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a super expression
    fn parse_super_expr(&mut self) -> Result<Box<Expr>> {
        // TODO: Implement super expression parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "Super expression parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a template literal
    fn parse_template_literal(&mut self) -> Result<Box<Expr>> {
        // TODO: Implement template literal parsing
        // This is a placeholder implementation
        let span = self.current_span();
        Err(Error {
            kind: ErrorKind::General {
                message: "Template literal parsing not implemented yet".to_string(),
            },
            span,
        })
    }

    /// Parse a unary expression
    fn parse_unary_expr(&mut self) -> Result<Box<Expr>> {
        let op_span = self.current_span();
        let token_type = self.current_token_type();

        // Convert token type to unary operator
        let op = match token_type {
            TokenType::Bang => UnaryOp::Bang,
            TokenType::Tilde => UnaryOp::Tilde,
            TokenType::Plus => UnaryOp::Plus,
            TokenType::Minus => UnaryOp::Minus,
            TokenType::TypeOf => UnaryOp::TypeOf,
            TokenType::Void => UnaryOp::Void,
            TokenType::Delete => UnaryOp::Delete,
            _ => {
                // This should never happen if is_unary_operator is correct
                return Err(Error {
                    kind: ErrorKind::General {
                        message: format!("Unexpected token: {}", token_type),
                    },
                    span: op_span,
                });
            }
        };

        self.lexer.next_token()?; // Consume operator

        // Parse the argument
        let arg = self.parse_expr_with_precedence(15)?; // Unary has precedence 15

        let arg_span = arg.span();
        let span = Span::new(op_span.lo, arg_span.hi);
        Ok(Box::new(Expr::Unary(UnaryExpr { span, op, arg })))
    }

    /// Parse an update expression
    fn parse_update_expr(&mut self) -> Result<Box<Expr>> {
        let op_span = self.current_span();
        let token_type = self.current_token_type();

        // Convert token type to update operator
        let op = match token_type {
            TokenType::PlusPlus => UpdateOp::PlusPlus,
            TokenType::MinusMinus => UpdateOp::MinusMinus,
            _ => {
                // This should never happen if is_update_operator is correct
                return Err(Error {
                    kind: ErrorKind::General {
                        message: format!("Unexpected token: {}", token_type),
                    },
                    span: op_span,
                });
            }
        };

        self.lexer.next_token()?; // Consume operator

        // Parse the argument
        let arg = self.parse_expr_with_precedence(15)?; // Update has precedence 15

        let arg_span = arg.span();
        let span = Span::new(op_span.lo, arg_span.hi);
        Ok(Box::new(Expr::Update(UpdateExpr {
            span,
            op,
            prefix: true,
            arg,
        })))
    }

    /// Parse an await expression
    fn parse_await_expr(&mut self) -> Result<Box<Expr>> {
        let start_span = self.current_span();
        self.lexer.next_token()?; // Consume 'await'

        // Parse the argument
        let arg = self.parse_expr_with_precedence(15)?; // Await has precedence 15

        let arg_span = arg.span();
        let span = Span::new(start_span.lo, arg_span.hi);
        Ok(Box::new(Expr::Await(AwaitExpr { span, arg })))
    }

    /// Parse a yield expression
    fn parse_yield_expr(&mut self) -> Result<Box<Expr>> {
        let start_span = self.current_span();
        self.lexer.next_token()?; // Consume 'yield'

        // Check for yield*
        let delegate = self.eat(TokenType::Asterisk)?;

        // Parse the argument if present
        let arg = if self.current_token_type().before_expr() && !self.current().had_line_break {
            Some(self.parse_expr_with_precedence(2)?) // Yield has precedence 2
        } else {
            None
        };

        let end_span = match &arg {
            Some(expr) => expr.span().hi,
            None => start_span.hi,
        };

        let span = Span::new(start_span.lo, end_span);
        Ok(Box::new(Expr::Yield(YieldExpr {
            span,
            arg,
            delegate,
        })))
    }
}